Let's Make Robots!

Zifduino bootloader programming shield

When I first began working with Arduino I was amazed by the incredible things people were doing with the devices. After a couple of successes with my little UNO R3 I wanted to make some things using  "standalone"  chips. Following some tips from fellow Ardweenies I discovered this: http://arduino.cc/en/Tutorial/ArduinoToBreadboard

I was quite pleased when after rounding up the parts needed and going through the steps I had my own little inexpensive Arduino clone! This was pretty exciting to me but I soon found that removing/reinstalling the chip in my UNO was a pain plus it risked damaging either the  ICchip or socket.

Since this method  seemed pretty simple and stable I decided to hardwire the breadboart to Arduino onto a protoshield creating  the Zifduino!

 

////.Probably not the cheapest or simplest solution for using atmega 328 chips in projects but I did not know about FTDI and USBASP devices at the time. Plus the Arduino as isp solution seemed to work well for my use.And it was fun to build!

I used the parts listed in the tutorial adding a couple of zif sockets for the chips being bootloaded or programmed as well as a power LED, LED's on the RX and TX pins (I like seeing the lights blink when a sketch is uploading!) and a reset switch. The socket is a 2x3 that I removed from some scrap electronics and is used for programming chips installed in projects with this cable:

I ordered some 2x3 sockets as well as some ribbon cable and placed another 2x3 socket onto my project board.I like the fact that the socket and plug are indexed so nothing gets hooked up wrong! //

A bottom view of zifduino:

Instead of a lot of tricky wiring I merely moved the chip to the protoshield using some pins and an ic socket. This places the zif directly above the UNO socket plus the pins are linked to the headers along the sides of the protoshield. The second zif socket only has connections to the pins required to burn the bootloader to a blank chip. Notice that I had to cut some of the traces on the protoshield for the parts to fit.

Here's the ArduinoISP sketch I got to work:

 

// ArduinoISP version 04m3

// Copyright (c) 2008-2011 Randall Bohn

// If you require a license, see 

//     http://www.opensource.org/licenses/bsd-license.php

//

// This sketch turns the Arduino into a AVRISP

// using the following arduino pins:

//

// pin name:    not-mega:         mega(1280 and 2560)

// slave reset: 10:               53 

// MOSI:        11:               51 

// MISO:        12:               50 

// SCK:         13:               52 

//

// Put an LED (with resistor) on the following pins:

// 9: Heartbeat   - shows the programmer is running

// 8: Error       - Lights up if something goes wrong (use red if that makes sense)

// 7: Programming - In communication with the slave

//

// 23 July 2011 Randall Bohn

// -Address Arduino issue 509 :: Portability of ArduinoISP

// http://code.google.com/p/arduino/issues/detail?id=509

//

// October 2010 by Randall Bohn

// - Write to EEPROM > 256 bytes

// - Better use of LEDs:

// -- Flash LED_PMODE on each flash commit

// -- Flash LED_PMODE while writing EEPROM (both give visual feedback of writing progress)

// - Light LED_ERR whenever we hit a STK_NOSYNC. Turn it off when back in sync.

// - Use pins_arduino.h (should also work on Arduino Mega)

//

// October 2009 by David A. Mellis

// - Added support for the read signature command

// 

// February 2009 by Randall Bohn

// - Added support for writing to EEPROM (what took so long?)

// Windows users should consider WinAVR's avrdude instead of the

// avrdude included with Arduino software.

//

// January 2008 by Randall Bohn

// - Thanks to Amplificar for helping me with the STK500 protocol

// - The AVRISP/STK500 (mk I) protocol is used in the arduino bootloader

// - The SPI functions herein were developed for the AVR910_ARD programmer 

// - More information at http://code.google.com/p/mega-isp

 

#include "pins_arduino.h"

#define RESET     SS

 

#define LED_HB    9

#define LED_ERR   8

#define LED_PMODE 7

#define PROG_FLICKER true

 

#define HWVER 2

#define SWMAJ 1

#define SWMIN 18

 

// STK Definitions

#define STK_OK      0x10

#define STK_FAILED  0x11

#define STK_UNKNOWN 0x12

#define STK_INSYNC  0x14

#define STK_NOSYNC  0x15

#define CRC_EOP     0x20 //ok it is a space...

 

void pulse(int pin, int times);

 

void setup() {

  Serial.begin(19200);

  pinMode(LED_PMODE, OUTPUT);

  pulse(LED_PMODE, 2);

  pinMode(LED_ERR, OUTPUT);

  pulse(LED_ERR, 2);

  pinMode(LED_HB, OUTPUT);

  pulse(LED_HB, 2);

}

 

int error=0;

int pmode=0;

// address for reading and writing, set by 'U' command

int here;

uint8_t buff[256]; // global block storage

 

#define beget16(addr) (*addr * 256 + *(addr+1) )

typedef struct param {

  uint8_t devicecode;

  uint8_t revision;

  uint8_t progtype;

  uint8_t parmode;

  uint8_t polling;

  uint8_t selftimed;

  uint8_t lockbytes;

  uint8_t fusebytes;

  int flashpoll;

  int eeprompoll;

  int pagesize;

  int eepromsize;

  int flashsize;

parameter;

 

parameter param;

 

// this provides a heartbeat on pin 9, so you can tell the software is running.

uint8_t hbval=128;

int8_t hbdelta=8;

void heartbeat() {

  if (hbval > 192) hbdelta = -hbdelta;

  if (hbval < 32) hbdelta = -hbdelta;

  hbval += hbdelta;

  analogWrite(LED_HB, hbval);

  delay(20);

}

 

 

void loop(void) {

  // is pmode active?

  if (pmode) digitalWrite(LED_PMODE, HIGH); 

  else digitalWrite(LED_PMODE, LOW);

  // is there an error?

  if (error) digitalWrite(LED_ERR, HIGH); 

  else digitalWrite(LED_ERR, LOW);

 

  // light the heartbeat LED

/* issue:730, topic:88649

  heartbeat(); */

  if (Serial.available()) {

    avrisp();

  }

}

 

uint8_t getch() {

  while(!Serial.available());

  return Serial.read();

}

void fill(int n) {

  for (int x = 0; x < n; x++) {

    buff[x] = getch();

  }

}

 

#define PTIME 30

void pulse(int pin, int times) {

  do {

    digitalWrite(pin, HIGH);

    delay(PTIME);

    digitalWrite(pin, LOW);

    delay(PTIME);

  } 

  while (times--);

}

 

void prog_lamp(int state) {

  if (PROG_FLICKER)

    digitalWrite(LED_PMODE, state);

}

 

void spi_init() {

  uint8_t x;

  SPCR = 0x53;

  x=SPSR;

  x=SPDR;

}

 

void spi_wait() {

  do {

  } 

  while (!(SPSR & (1 << SPIF)));

}

 

uint8_t spi_send(uint8_t b) {

  uint8_t reply;

  SPDR=b;

  spi_wait();

  reply = SPDR;

  return reply;

}

 

uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {

  uint8_t n;

  spi_send(a); 

  n=spi_send(b);

  //if (n != a) error = -1;

  n=spi_send(c);

  return spi_send(d);

}

 

void empty_reply() {

  if (CRC_EOP == getch()) {

    Serial.print((char)STK_INSYNC);

    Serial.print((char)STK_OK);

  } 

  else {

    error++;

    Serial.print((char)STK_NOSYNC);

  }

}

 

void breply(uint8_t b) {

  if (CRC_EOP == getch()) {

    Serial.print((char)STK_INSYNC);

    Serial.print((char)b);

    Serial.print((char)STK_OK);

  } 

  else {

    error++;

    Serial.print((char)STK_NOSYNC);

  }

}

 

void get_version(uint8_t c) {

  switch(c) {

  case 0x80:

    breply(HWVER);

    break;

  case 0x81:

    breply(SWMAJ);

    break;

  case 0x82:

    breply(SWMIN);

    break;

  case 0x93:

    breply('S'); // serial programmer

    break;

  default:

    breply(0);

  }

}

 

void set_parameters() {

  // call this after reading paramter packet into buff[]

  param.devicecode = buff[0];

  param.revision   = buff[1];

  param.progtype   = buff[2];

  param.parmode    = buff[3];

  param.polling    = buff[4];

  param.selftimed  = buff[5];

  param.lockbytes  = buff[6];

  param.fusebytes  = buff[7];

  param.flashpoll  = buff[8]; 

  // ignore buff[9] (= buff[8])

  // following are 16 bits (big endian)

  param.eeprompoll = beget16(&buff[10]);

  param.pagesize   = beget16(&buff[12]);

  param.eepromsize = beget16(&buff[14]);

 

  // 32 bits flashsize (big endian)

  param.flashsize = buff[16] * 0x01000000

    + buff[17] * 0x00010000

    + buff[18] * 0x00000100

    + buff[19];

 

}

 

void start_pmode() {

  spi_init();

  // following delays may not work on all targets...

  pinMode(RESET, OUTPUT);

  digitalWrite(RESET, HIGH);

  pinMode(SCK, OUTPUT);

  digitalWrite(SCK, LOW);

  delay(50);

  digitalWrite(RESET, LOW);

  delay(50);

  pinMode(MISO, INPUT);

  pinMode(MOSI, OUTPUT);

  spi_transaction(0xAC, 0x53, 0x00, 0x00);

  pmode = 1;

}

 

void end_pmode() {

  pinMode(MISO, INPUT);

  pinMode(MOSI, INPUT);

  pinMode(SCK, INPUT);

  pinMode(RESET, INPUT);

  pmode = 0;

}

 

void universal() {

  int w;

  uint8_t ch;

 

  fill(4);

  ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);

  breply(ch);

}

 

void flash(uint8_t hilo, int addr, uint8_t data) {

  spi_transaction(0x40+8*hilo, 

  addr>>8 & 0xFF, 

  addr & 0xFF,

  data);

}

void commit(int addr) {

  if (PROG_FLICKER) prog_lamp(LOW);

  spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);

  if (PROG_FLICKER) {

    delay(PTIME);

    prog_lamp(HIGH);

  }

}

 

//#define _current_page(x) (here & 0xFFFFE0)

int current_page(int addr) {

  if (param.pagesize == 32)  return here & 0xFFFFFFF0;

  if (param.pagesize == 64)  return here & 0xFFFFFFE0;

  if (param.pagesize == 128) return here & 0xFFFFFFC0;

  if (param.pagesize == 256) return here & 0xFFFFFF80;

  return here;

}

 

 

void write_flash(int length) {

  fill(length);

  if (CRC_EOP == getch()) {

    Serial.print((char) STK_INSYNC);

    Serial.print((char) write_flash_pages(length));

  } 

  else {

    error++;

    Serial.print((char) STK_NOSYNC);

  }

}

 

uint8_t write_flash_pages(int length) {

  int x = 0;

  int page = current_page(here);

  while (x < length) {

    if (page != current_page(here)) {

      commit(page);

      page = current_page(here);

    }

    flash(LOW, here, buff[x++]);

    flash(HIGH, here, buff[x++]);

    here++;

  }

 

  commit(page);

 

  return STK_OK;

}

 

#define EECHUNK (32)

uint8_t write_eeprom(int length) {

  // here is a word address, get the byte address

  int start = here * 2;

  int remaining = length;

  if (length > param.eepromsize) {

    error++;

    return STK_FAILED;

  }

  while (remaining > EECHUNK) {

    write_eeprom_chunk(start, EECHUNK);

    start += EECHUNK;

    remaining -= EECHUNK;

  }

  write_eeprom_chunk(start, remaining);

  return STK_OK;

}

// write (length) bytes, (start) is a byte address

uint8_t write_eeprom_chunk(int start, int length) {

  // this writes byte-by-byte,

  // page writing may be faster (4 bytes at a time)

  fill(length);

  prog_lamp(LOW);

  for (int x = 0; x < length; x++) {

    int addr = start+x;

    spi_transaction(0xC0, (addr>>8) & 0xFF, addr & 0xFF, buff[x]);

    delay(45);

  }

  prog_lamp(HIGH); 

  return STK_OK;

}

 

void program_page() {

  char result = (char) STK_FAILED;

  int length = 256 * getch();

  length += getch();

  char memtype = getch();

  // flash memory @here, (length) bytes

  if (memtype == 'F') {

    write_flash(length);

    return;

  }

  if (memtype == 'E') {

    result = (char)write_eeprom(length);

    if (CRC_EOP == getch()) {

      Serial.print((char) STK_INSYNC);

      Serial.print(result);

    } 

    else {

      error++;

      Serial.print((char) STK_NOSYNC);

    }

    return;

  }

  Serial.print((char)STK_FAILED);

  return;

}

 

uint8_t flash_read(uint8_t hilo, int addr) {

  return spi_transaction(0x20 + hilo * 8,

  (addr >> 8) & 0xFF,

  addr & 0xFF,

  0);

}

 

char flash_read_page(int length) {

  for (int x = 0; x < length; x+=2) {

    uint8_t low = flash_read(LOW, here);

    Serial.print((char) low);

    uint8_t high = flash_read(HIGH, here);

    Serial.print((char) high);

    here++;

  }

  return STK_OK;

}

 

char eeprom_read_page(int length) {

  // here again we have a word address

  int start = here * 2;

  for (int x = 0; x < length; x++) {

    int addr = start + x;

    uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF);

    Serial.print((char) ee);

  }

  return STK_OK;

}

 

void read_page() {

  char result = (char)STK_FAILED;

  int length = 256 * getch();

  length += getch();

  char memtype = getch();

  if (CRC_EOP != getch()) {

    error++;

    Serial.print((char) STK_NOSYNC);

    return;

  }

  Serial.print((char) STK_INSYNC);

  if (memtype == 'F') result = flash_read_page(length);

  if (memtype == 'E') result = eeprom_read_page(length);

  Serial.print(result);

  return;

}

 

void read_signature() {

  if (CRC_EOP != getch()) {

    error++;

    Serial.print((char) STK_NOSYNC);

    return;

  }

  Serial.print((char) STK_INSYNC);

  uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00);

  Serial.print((char) high);

  uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00);

  Serial.print((char) middle);

  uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00);

  Serial.print((char) low);

  Serial.print((char) STK_OK);

}

//////////////////////////////////////////

//////////////////////////////////////////

 

 

////////////////////////////////////

////////////////////////////////////

int avrisp() { 

  uint8_t data, low, high;

  uint8_t ch = getch();

  switch (ch) {

  case '0': // signon

    error = 0;

    empty_reply();

    break;

  case '1':

    if (getch() == CRC_EOP) {

      Serial.print((char) STK_INSYNC);

      Serial.print("AVR ISP");

      Serial.print((char) STK_OK);

    }

    break;

  case 'A':

    get_version(getch());

    break;

  case 'B':

    fill(20);

    set_parameters();

    empty_reply();

    break;

  case 'E': // extended parameters - ignore for now

    fill(5);

    empty_reply();

    break;

 

  case 'P':

    start_pmode();

    empty_reply();

    break;

  case 'U': // set address (word)

    here = getch();

    here += 256 * getch();

    empty_reply();

    break;

 

  case 0x60: //STK_PROG_FLASH

    low = getch();

    high = getch();

    empty_reply();

    break;

  case 0x61: //STK_PROG_DATA

    data = getch();

    empty_reply();

    break;

 

  case 0x64: //STK_PROG_PAGE

    program_page();

    break;

 

  case 0x74: //STK_READ_PAGE 't'

    read_page();    

    break;

 

  case 'V': //0x56

    universal();

    break;

  case 'Q': //0x51

    error=0;

    end_pmode();

    empty_reply();

    break;

 

  case 0x75: //STK_READ_SIGN 'u'

    read_signature();

    break;

 

    // expecting a command, not CRC_EOP

    // this is how we can get back in sync

  case CRC_EOP:

    error++;

    Serial.print((char) STK_NOSYNC);

    break;

 

    // anything else we will return STK_UNKNOWN

  default:

    error++;

    if (CRC_EOP == getch()) 

      Serial.print((char)STK_UNKNOWN);

    else

      Serial.print((char)STK_NOSYNC);

  }

}

You should be able to copy/paste into the IDE.

 

 

 

 

h

.

 

 

 

 

 

h